Data Mining



         

Иерархические методы - часть 2


Представим переменные X и Y в виде диаграммы рассеивания, изображенной на рис. 13.1.

Диаграмма рассеивания переменных X и Y

Рис. 13.1.  Диаграмма рассеивания переменных X и Y

На рисунке мы видим несколько групп "похожих" примеров. Примеры (объекты), которые по значениям X и Y "похожи" друг на друга, принадлежат к одной группе (кластеру); объекты из разных кластеров не похожи друг на друга.

Критерием для определения схожести и различия кластеров является расстояние между точками на диаграмме рассеивания. Это сходство можно "измерить", оно равно расстоянию между точками на графике. Способов определения меры расстояния между кластерами, называемой еще мерой близости, существует несколько. Наиболее распространенный способ - вычисление евклидова расстояния между двумя точками i и j на плоскости, когда известны их координаты X и Y:

 D_{ij}=\sqrt{(x_{i}-x_{j})^2+(y_{i}-y_{j})^2},

(13.1)

Примечание: чтобы узнать расстояние между двумя точками, надо взять разницу их координат по каждой оси, возвести ее в квадрат, сложить полученные значения для всех осей и извлечь квадратный корень из суммы.

Когда осей больше, чем две, расстояние рассчитывается таким образом: сумма квадратов разницы координат состоит из стольких слагаемых, сколько осей (измерений) присутствует в нашем пространстве. Например, если нам нужно найти расстояние между двумя точками в пространстве трех измерений (такая ситуация представлена на рис. 13.2), формула (13.1) приобретает вид:

 D=\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2+(z_{1}-z_{2})^2},

(13.2)

Расстояние между двумя точками в пространстве трех измерений

Рис. 13.2.  Расстояние между двумя точками в пространстве трех измерений

Кластер имеет следующие математические характеристики: центр, радиус, среднеквадратическое отклонение, размер кластера.

Центр кластера - это среднее геометрическое место точек в пространстве переменных.

Радиус кластера - максимальное расстояние точек от центра кластера.

Как было отмечено в одной из предыдущих лекций, кластеры могут быть перекрывающимися. Такая ситуация возникает, когда обнаруживается перекрытие кластеров. В этом случае невозможно при помощи математических процедур однозначно отнести объект к одному из двух кластеров.


Содержание  Назад  Вперед