Data Mining



         

Пример решения задачи - часть 2


Шаг № 6 "Настройка параметров остановки обучения"

Рис. 12.5.  Шаг № 6 "Настройка параметров остановки обучения"

На седьмом шаге, представленном на рис. 12.6, настраиваются другие параметры обучения: способ начальной инициализации, тип функции соседства. Возможны два варианта кластеризации: автоматическое определение числа кластеров с соответствующим уровнем значимости и фиксированное количество кластеров (определяется пользователем). Поскольку нам неизвестно количество кластеров, выберем автоматическое определение их количества.

Шаг № 7 "Настройка параметров остановки обучения"

Рис. 12.6.  Шаг № 7 "Настройка параметров остановки обучения"

На восьмом шаге запускаем процесс обучения сети - необходимо нажать на кнопку "Пуск" и дождаться окончания процесса обучения. Во время обучения можем наблюдать изменение количества распознанных примеров и текущие значения ошибок. Этот процесс аналогичен тому, что мы рассматривали при обучении нейронных сетей в предыдущей лекции.

По окончании обучения в списке визуализаторов выберем "Карту Кохонена" и визуализатор "Что-если". На последнем шаге настраиваем отображения карты Кохонена, этот шаг проиллюстрирован на рис. 12.7.

"Шаг № 10 Настройка отображений карты Кохонена"

Рис. 12.7.  "Шаг № 10 Настройка отображений карты Кохонена"

Укажем отображения всех входных, выходных столбцов, кластеров, а также поставим флажок "Границы кластеров" для четкого отображения границ.




Содержание  Назад  Вперед