Data Mining



         

Байесовская фильтрация по словам


Не так давно баесовская классификация была предложена для персональной фильтрации спама. Первый фильтр был разработан Полем Грахемом (Paul Graham). Для работы алгоритма требуется выполнение двух требований.

Первое требование - необходимо, чтобы у классифицируемого объекта присутствовало достаточное количество признаков. Этому идеально удовлетворяют все слова писем пользователя, за исключением совсем коротких и очень редко встречающихся.

Второе требование - постоянное переобучение и пополнение набора "спам - не спам". Такие условия очень хорошо работают в локальных почтовых клиентах, так как поток "не спама" у конечного клиента достаточно постоянен, а если изменяется, то не быстро.

Однако для всех клиентов сервера точно определить поток "не спама" довольно сложно, поскольку одно и то же письмо, являющееся для одного клиента спамом, для другого спамом не является. Словарь получается слишком большим, не существует четкого разделения на спам и "не спам", в результате качество классификации, в данном случае решение задачи фильтрации писем, значительно снижается.




Содержание  Назад