Data Mining



         

Задачи регрессионного анализа - часть 4


В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в. представлены результаты вывода остатков. Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. ОстаткиНаблюдениеПредсказанное YОстаткиСтандартные остатки
19,610909091-0,610909091-1,528044662
27,305454545-0,305454545-0,764022331
311,916363640,0836363640,209196591
414,221818180,7781818181,946437843
516,527272730,4727272731,182415512
618,832727270,1672727270,418393181
721,13818182-0,138181818-0,34562915
823,44363636-0,043636364-0,109146047
925,74909091-0,149090909-0,372915662
1028,05454545-0,254545455-0,636685276

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение остатка в нашем случае - 0,778, наименьшее - 0,043. Для лучшей интерпретации этих данных воспользуемся графиком исходных данных и построенной линией регрессии, представленными на рис. 8.3. Как видим, линия регрессии достаточно точно "подогнана" под значения исходных данных.

Следует учитывать, что рассматриваемый пример является достаточно простым и далеко не всегда возможно качественное построение регрессионной прямой линейного вида.

Исходные данные и линия регрессии

Рис. 8.3.  Исходные данные и линия регрессии

Осталась нерассмотренной задача оценки неизвестных будущих значений зависимой переменной на основании известных значений независимой переменной, т.е. задача прогнозирования.

Имея уравнение регрессии, задача прогнозирования сводится к решению уравнения Y= x*2,305454545+2,694545455 с известными значениями x. Результаты прогнозирования зависимой переменной Y на шесть шагов вперед представлены в таблице 8.4.

Таблица 8.4. Результаты прогнозирования переменной YxY(прогнозируемое)
1128,05455
1230,36
1332,66545
1434,97091
1537,27636
1639,58182

Таким образом, в результате использования регрессионного анализа в пакете Microsoft Excel мы:

  • построили уравнение регрессии;
  • установили форму зависимости и направление связи между переменными - положительная линейная регрессия, которая выражается в равномерном росте функции;
  • установили направление связи между переменными;
  • оценили качество полученной регрессионной прямой;
  • смогли увидеть отклонения расчетных данных от данных исходного набора;
  • предсказали будущие значения зависимой переменной.

Если функция регрессии определена, интерпретирована и обоснована, и оценка точности регрессионного анализа соответствует требованиям, можно считать, что построенная модель и прогнозные значения обладают достаточной надежностью.

Прогнозные значения, полученные таким способом, являются средними значениями, которые можно ожидать.




Содержание  Назад  Вперед