Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).
В таблице 8.3в. представлены результаты вывода остатков. Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".
ВЫВОД ОСТАТКА
1 | 9,610909091 | -0,610909091 | -1,528044662 |
2 | 7,305454545 | -0,305454545 | -0,764022331 |
3 | 11,91636364 | 0,083636364 | 0,209196591 |
4 | 14,22181818 | 0,778181818 | 1,946437843 |
5 | 16,52727273 | 0,472727273 | 1,182415512 |
6 | 18,83272727 | 0,167272727 | 0,418393181 |
7 | 21,13818182 | -0,138181818 | -0,34562915 |
8 | 23,44363636 | -0,043636364 | -0,109146047 |
9 | 25,74909091 | -0,149090909 | -0,372915662 |
10 | 28,05454545 | -0,254545455 | -0,636685276 |
При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение остатка в нашем случае - 0,778, наименьшее - 0,043. Для лучшей интерпретации этих данных воспользуемся графиком исходных данных и построенной линией регрессии, представленными на рис. 8.3. Как видим, линия регрессии достаточно точно "подогнана" под значения исходных данных.
Следует учитывать, что рассматриваемый пример является достаточно простым и далеко не всегда возможно качественное построение регрессионной прямой линейного вида.
Осталась нерассмотренной задача оценки неизвестных будущих значений зависимой переменной на основании известных значений независимой переменной, т.е. задача прогнозирования.
Имея уравнение регрессии, задача прогнозирования сводится к решению уравнения Y= x*2,305454545+2,694545455 с известными значениями x. Результаты прогнозирования зависимой переменной Y на шесть шагов вперед представлены в таблице 8.4.
11 | 28,05455 |
12 | 30,36 |
13 | 32,66545 |
14 | 34,97091 |
15 | 37,27636 |
16 | 39,58182 |
Таким образом, в результате использования регрессионного анализа в пакете Microsoft Excel мы:
Если функция регрессии определена, интерпретирована и обоснована, и оценка точности регрессионного анализа соответствует требованиям, можно считать, что построенная модель и прогнозные значения обладают достаточной надежностью.
Прогнозные значения, полученные таким способом, являются средними значениями, которые можно ожидать.