Data Mining



Web Mining - часть 2


  • многоуровневые базы данных;
  • системы web-запросов (Web Query Systems);

Примеры систем web-запросов:

  • W3QL (Konopnicki и Shmueli, 1995),
  • WebLog (Lakshmanan и др., 1996),
  • Lorel (Quass и др., 1995),
  • UnQL (Buneman и др., 1995 and 1996),
  • TSIMMIS (Chawathe и др.., 1994).

Второе направление Web Usage Mining подразумевает обнаружение закономерностей в действиях пользователя Web-узла или их группы.

Анализируется следующая информация:

  • какие страницы просматривал пользователь;
  • какова последовательность просмотра страниц.

Анализируется также, какие группы пользователей можно выделить среди общего их числа на основе истории просмотра Web-узла.

Web Usage Mining включает следующие составляющие:

  • предварительная обработка;
  • операционная идентификация;
  • инструменты обнаружения шаблонов;
  • инструменты анализа шаблонов.

При использовании Web Mining перед разработчиками возникает два типа задач. Первая касается сбора данных, вторая - использования методов персонификации. В результате сбора некоторого объема персонифицированных ретроспективных данных о конкретном клиенте, система накапливает определенные знания о нем и может рекомендовать ему, например, определенные наборы товаров или услуг. На основе информации о всех посетителях сайта Web-система может выявить определенные группы посетителей и также рекомендовать им товары или же предлагать товары в рассылках.

Задачи Web Mining согласно [31] можно подразделить на такие категории:

  • Предварительная обработка данных для Web Mining.
  • Обнаружение шаблонов и открытие знаний с использованием ассоциативных правил, временных последовательностей, классификации и кластеризации;
  • Анализ полученного знания.



Содержание  Назад  Вперед